chop.passes.graph.analysis.statistical_profiler.profile_statistics#
profile_statistics_analysis_pass#
- chop.passes.graph.analysis.statistical_profiler.profile_statistics.profile_statistics_analysis_pass(graph, pass_args: dict)[source]#
Perform profile statistics analysis on the given graph.
- Parameters:
graph (MaseGraph) – The graph to perform analysis on.
pass_args (dict) – The arguments for the analysis pass.
pass_args = { "by": "type", # pick from ["name", "type"] "target_weight_nodes": "linear", # ["conv2d", "linear" ...], "target_activation_nodes": "relu", # ["relu", "sigmoid" ...], "weight_statistics": { "variance_precise": { "device": "cpu", "dims": "all" }, }, "activation_statistics": { "variance_precise": {"device": "cpu", "dims": "all"}, }, "input_generator": input_generator, "num_samples": 1, "profile_output_activation": False,
- Returns:
The modified graph and an empty dictionary.
- Return type:
tuple(MaseGraph, dict)