chop.passes.graph.analysis.add_metadata#

add_common_metadata_analysis_pass#

chop.passes.graph.analysis.add_metadata.add_common_metadata.add_common_metadata_analysis_pass(graph, pass_args={'add_value': True, 'dummy_in': None, 'force_device_meta': False})[source]#

add common metadata

Parameters:
  • graph (MaseGraph) – a MaseGraph

  • pass_args (_type_, optional, "add_value" controls whether tensor values would be added to the meta data, defaults to True) – this pass does not need any arguments, defaults to None

pass_args can take

  • dummy_in: a dictionary of dummy inputs to the graph

  • add_value: a boolean to control whether tensor values would be added to the meta data in the “value” field

  • force_device_meta: a boolean to force everything to be on device=”meta”

{
    "dummy_in": dummy_in, # this would be a dictionary of dummy inputs (actual tensors)
    "add_value": True, # if True, real values of tensors would be added to the metadata "value" field
    "force_device_meta": False # if True, everything would be forced to be on device="meta" for a symbolic run
}
Returns:

return a tuple of a MaseGraph and an empty dict (no additional info to return)

Return type:

tuple(MaseGraph, Dict)

The common metadata of a Mase node in a Mase graph describes the constraints of the node for any static analysis or possible transformation. The metadata has a tree structure, e.g.

  • common
    • mase_op -> str : the mase op of the node, e.g. placeholder, linear, relu

    • mase_type -> str : the mase type of the node, e.g. module, builtin_func, module_related_func

    • args -> {}
      • $name : name of the arg

        (if the arg is a tensor)

        • type -> type of the arg, e.g. fixed point or float

        • precision -> format of the type, e.g. (10, 5)

        • shape -> shape of the arg

        (if the arg is not a tensor)

        • value of the arg

    • results -> {}
      • $name : name of the result

        (if the result is a tensor)

        • type -> type of the result, e.g. fixed point or float

        • precision -> format of the type, e.g. (10, 5)

        • shape -> shape of the result

        (if the result is not a tensor)

        • value of the result

Examples:

A linear layer in a mase graph:

%fc1 : [num_users=1] = call_module[target=fc1](args = (%flatten,), kwargs = {})

A linear layer after this pass:

{
    "common": {
        "mase_type": "module_related_func",
        "mase_op": "linear",
        "args": {
            "data_in_0": {
                "shape": [1, 784],
                "torch_dtype": torch.float32,
                "type": "float",
                "precision": [32],
            },
            "weight": {"type": "float", "precision": [32], "shape": [784, 784]},
            "bias": {"type": "float", "precision": [32], "shape": [784]},
        },
        "results": {
            "data_out_0": {
                "type": "float",
                "precision": [32],
                "shape": [1, 784],
                "torch_dtype": torch.float32,
            }
        },
    },
    "software": {},
    "hardware": {},
}

A relu layer in a mase graph:

%relu : [num_users=1] = call_function[target=torch.nn.functional.relu](args = (%fc1,), kwargs = {inplace: False})

A relu layer after this pass:

{
    "common": {
        "mase_type": "module_related_func",
        "mase_op": "relu",
        "results": {
            "data_out_0": {
                "type": "float",
                "precision": [32],
                "shape": [1, 784],
                "torch_dtype": torch.float32,
            }
        },
        "args": {
            "data_in_0": {
                "shape": [1, 784],
                "torch_dtype": torch.float32,
                "type": "float",
                "precision": [32],
            },
            "inplace": False,
        },
    },
    "software": {},
    "hardware": {},
}

A flatten op in a mase graph:

%flatten : [num_users=1] = call_function[target=torch.flatten](args = (%x,), kwargs = {start_dim: 1, end_dim: -1})

A flatten op after this pass:

{
    "common": {
        "mase_type": "implicit_func",
        "mase_op": "flatten",
        "results": {
            "data_out_0": {
                "type": "float",
                "precision": [32],
                "shape": [1, 784],
                "torch_dtype": torch.float32,
            }
        },
        "args": {
            "data_in_0": {
                "shape": [1, 28, 28],
                "torch_dtype": torch.float32,
                "type": "float",
                "precision": [32],
            },
            "start_dim": 1,
            "end_dim": -1,
        },
    },
    "software": {},
    "hardware": {},
}

add_software_metadata_analysis_pass#

chop.passes.graph.analysis.add_metadata.add_software_metadata.add_software_metadata_analysis_pass(graph, pass_args=None)[source]#

add software metadata

Parameters:
  • graph (MaseGraph) – a MaseGraph

  • pass_args (_type_, optional) – this pass does not need any arguments, defaults to None

pass_args is normally None for this pass

Returns:

return a tuple of a MaseGraph and an empty dict (no additional info to return)

Return type:

tuple(MaseGraph, Dict)

add_hardware_metadata_analysis_pass#

chop.passes.graph.analysis.add_metadata.add_hardware_metadata.add_hardware_metadata_analysis_pass(graph, pass_args=None)[source]#

add hardware metadata

Parameters:
  • graph (MaseGraph) – a MaseGraph

  • pass_args (_type_, optional) – this pass does not need any arguments, defaults to None

Returns:

return a tuple of a MaseGraph and an empty dict (no additional info to return)

Return type:

tuple(MaseGraph, Dict)

The hardware metadata of a Mase node in a Mase graph describes the constraints of the node for any static analysis or possible transformation. The metadata has a tree structure, e.g.

  • hardware
    • is_implicit -> bool : whether the node is mapped on hardware or software annotation only

    • verilog_param -> {} : parameters need for customise the hardware module

    • toolchain -> str : tool chain for code generation, must be INTERNAL, EXTERNAL or HLS

    • module -> str : the name of the used hardware module

    • device_id -> int : the ID of the device where the node is mapped, default = -1

    • interface -> {}
      • namename of the parameters
        • storage : the hardware interface implemented, must be BRAM

        • transpose : whether the data needs to be transposed before emitting

    • dependence_files -> [] : the dependent files for the generated module

The verilog parameters follow the following naming rules:

  • Hardware signal naming rules

    • Data with tensor types are explicit as hardware signals, such as weight and bias, and Data with scalar/tuple types are implicit as parameters (TODO).

    • Each op is a node with a set of inputs, outputs and parameters

    • The input is named by: data_in_0 (data_in_0_ready, data_in_valid), data_in_1,

    • The output is named by: data_out_0 (data_out_0_ready, data_out_valid), data_out_1, ..

    • The parameters are named by PyTorch names: weight (weight_ready, weight_valid), bias (bias_ready, bias_valid)

  • Hardware parameters naming rules Parameters with tensor types are explicit as hardware signals, such as weight and bias, and parameters with scalar/tuple types are implicit as hardware parameters.

    • Taking data_in_0 for example:
      • DATA_IN_0_PRECISION_0

      • DATA_IN_0_PRECISION_1

      • (depending on how many precision parameters we have.

      • The order matches the same order as the mase precision metadata)

      • DATA_IN_0_TENSOR_SIZE_DIM_0

      • DATA_IN_0_TENSOR_SIZE_DIM_1

      • DATA_IN_0_TENSOR_SIZE_DIM_2

      • DATA_IN_0_PARALLELISM_DIM_0

      • DATA_IN_0_PARALLELISM_DIM_1

      • DATA_IN_0_PARALLELISM_DIM_2

      • (This means that the number of iterations = tensor_size / spatial_size)

    • Implicit parameters are directly translated into verilog parameters, e.g. STRIDE DIM

Examples:

A linear layer in a mase graph with the following common metadata:

%fc1 : [num_users=1] = call_module[target=fc1](args = (%flatten,), kwargs = {})
{
    "common": {
        "mase_type": "module_related_func",
        "mase_op": "linear",
        "args": {
            "data_in_0": {
                "shape": [1, 784],
                "torch_dtype": torch.float32,
                "type": "float",
                "precision": [32],
            },
            "weight": {"type": "float", "precision": [32], "shape": [784, 784]},
            "bias": {"type": "float", "precision": [32], "shape": [784]},
        },
        "results": {
            "data_out_0": {
                "type": "float",
                "precision": [32],
                "shape": [1, 784],
                "torch_dtype": torch.float32,
            }
        },
    },
    "software": {},
    "hardware": {},
}

The hardware metadata of the linear layer after this pass:

{
    "common": {...},
    "software": {},
    "hardware": {
        "is_implicit": False,
        "interface": {
            "weight": {"storage": "BRAM", "transpose": False},
            "bias": {"storage": "BRAM", "transpose": False},
        },
        "toolchain": "INTERNAL",
        "module": "fixed_linear",
        "device_id": -1,
        "dependence_files": [
            "cast/fixed_cast.sv",
            "fixed_arithmetic/fixed_dot_product.sv",
            "fixed_arithmetic/fixed_vector_mult.sv",
            "fixed_arithmetic/register_slice.sv",
            "fixed_arithmetic/fixed_accumulator.sv",
            "fixed_arithmetic/fixed_adder_tree.sv",
            "fixed_arithmetic/fixed_adder_tree_layer.sv",
            "fixed_arithmetic/fixed_mult.sv",
            "common/join2.sv",
            "linear/fixed_linear.sv",
        ],
        "verilog_param": {
            "DATA_IN_0_PRECISION_0": 8,
            "DATA_IN_0_PRECISION_1": 3,
            "DATA_IN_0_TENSOR_SIZE_DIM_0": 1,
            "DATA_IN_0_PARALLELISM_DIM_0": 1,
            "DATA_IN_0_TENSOR_SIZE_DIM_1": 784,
            "DATA_IN_0_PARALLELISM_DIM_1": 784,
            "DATA_IN_0_TENSOR_SIZE_DIM_2": 1,
            "DATA_IN_0_PARALLELISM_DIM_2": 1,
            "WEIGHT_PRECISION_0": 8,
            "WEIGHT_PRECISION_1": 3,
            "WEIGHT_TENSOR_SIZE_DIM_0": 784,
            "WEIGHT_PARALLELISM_DIM_0": 784,
            "WEIGHT_TENSOR_SIZE_DIM_1": 784,
            "WEIGHT_PARALLELISM_DIM_1": 784,
            "WEIGHT_TENSOR_SIZE_DIM_2": 1,
            "WEIGHT_PARALLELISM_DIM_2": 1,
            "BIAS_PRECISION_0": 8,
            "BIAS_PRECISION_1": 3,
            "BIAS_TENSOR_SIZE_DIM_0": 784,
            "BIAS_PARALLELISM_DIM_0": 784,
            "BIAS_TENSOR_SIZE_DIM_1": 1,
            "BIAS_PARALLELISM_DIM_1": 1,
            "BIAS_TENSOR_SIZE_DIM_2": 1,
            "BIAS_PARALLELISM_DIM_2": 1,
            "DATA_OUT_0_PRECISION_0": 8,
            "DATA_OUT_0_PRECISION_1": 3,
            "DATA_OUT_0_TENSOR_SIZE_1_DIM_0": 1,
            "DATA_OUT_0_PARALLELISM_1_DIM_0": 1,
            "DATA_OUT_0_TENSOR_SIZE_1_DIM_1": 784,
            "DATA_OUT_0_PARALLELISM_1_DIM_1": 784,
            "DATA_OUT_0_TENSOR_SIZE_1_DIM_2": 1,
            "DATA_OUT_0_PARALLELISM_1_DIM_2": 1,
        },
    },
}

A relu layer in a mase graph with the following common metadata:

%relu : [num_users=1] = call_function[target=torch.nn.functional.relu](args = (%fc1,), kwargs = {inplace: False})
{
    "common": {
        "mase_type": "module_related_func",
        "mase_op": "relu",
        "results": {
            "data_out_0": {
                "type": "float",
                "precision": [32],
                "shape": [1, 784],
                "torch_dtype": torch.float32,
            }
        },
        "args": {
            "data_in_0": {
                "shape": [1, 784],
                "torch_dtype": torch.float32,
                "type": "float",
                "precision": [32],
            },
            "inplace": False,
        },
    },
    "software": {},
    "hardware": {},
}

The hardware metadata of the relu layer after this pass:

{
    "common": {...},
    "software": {},
    "hardware": {
        "is_implicit": False,
        "interface": {"inplace": {}},
        "toolchain": "INTERNAL",
        "module": "fixed_relu",
        "device_id": -1,
        "dependence_files": ["activations/fixed_relu.sv"],
        "verilog_param": {
            "DATA_IN_0_PRECISION_0": 8,
            "DATA_IN_0_PRECISION_1": 3,
            "DATA_IN_0_TENSOR_SIZE_DIM_0": 1,
            "DATA_IN_0_PARALLELISM_DIM_0": 1,
            "DATA_IN_0_TENSOR_SIZE_DIM_1": 784,
            "DATA_IN_0_PARALLELISM_DIM_1": 784,
            "DATA_IN_0_TENSOR_SIZE_DIM_2": 1,
            "DATA_IN_0_PARALLELISM_DIM_2": 1,
            "INPLACE": False,
            "DATA_OUT_0_PRECISION_0": 8,
            "DATA_OUT_0_PRECISION_1": 3,
            "DATA_OUT_0_TENSOR_SIZE_1_DIM_0": 1,
            "DATA_OUT_0_PARALLELISM_1_DIM_0": 1,
            "DATA_OUT_0_TENSOR_SIZE_1_DIM_1": 784,
            "DATA_OUT_0_PARALLELISM_1_DIM_1": 784,
            "DATA_OUT_0_TENSOR_SIZE_1_DIM_2": 1,
            "DATA_OUT_0_PARALLELISM_1_DIM_2": 1,
        },
    },
}