Source code for chop.nn.quantized.functional.selu

from functools import partial

import torch
import torch.nn.functional as F

# from ....graph.mase_tracer import mark_as_leaf_func
from chop.nn.quantizers import (
    block_fp_quantizer,
    block_log_quantizer,
    block_minifloat_quantizer,
    integer_quantizer,
    log_quantizer,
    minifloat_denorm_quantizer,
    minifloat_ieee_quantizer,
    binary_quantizer,
    ternary_quantizer,
)


[docs] def selu_integer(x, inplace=False, config=None): bypass = config.get("bypass", False) if bypass: return F.selu(x, inplace=inplace) else: x_width, x_frac_width = config["data_in_width"], config["data_in_frac_width"] x_quantizer = partial( integer_quantizer, width=x_width, frac_width=x_frac_width, is_signed=False ) return F.selu(x_quantizer(x), inplace=inplace)
[docs] def selu_binary(x, inplace=False, config=None): # Notice that this software does not mathemetically make sense. We added it for the completion of the path for now. bypass = config.get("bypass", False) if bypass: return F.selu(x, inplace=inplace) else: x_stochastic = config["data_in_stochastic"] x_bipolar = config["data_in_bipolar"] x_quantizer = partial( binary_quantizer, stochastic=x_stochastic, bipolar=x_bipolar ) return F.selu(x_quantizer(x), inplace=inplace)
[docs] def selu_ternary(x, inplace=False, config=None): bypass = config.get("bypass", False) if bypass: return F.selu(x, inplace=inplace) else: x_scaling_factor = config["data_in_scaling_factor"] x_quantizer = partial(ternary_quantizer, scaling_factor=x_scaling_factor) return F.selu(x_quantizer(x), inplace=inplace)
[docs] def selu_minifloat_denorm(x, inplace=False, config=None): bypass = config.get("bypass", False) if bypass: return F.selu(x, inplace=inplace) else: x_width, x_exponent_width, x_exponent_bias = ( config["data_in_width"], config["data_in_exponent_width"], config["data_in_exponent_bias"], ) x_quantizer = partial( minifloat_denorm_quantizer, width=x_width, exponent_width=x_exponent_width, exponent_bias=x_exponent_bias, ) return F.selu(x_quantizer(x), inplace=inplace)
[docs] def selu_minifloat_ieee(x, inplace=False, config=None): bypass = config.get("bypass", False) if bypass: return F.selu(x, inplace=inplace) else: x_width, x_exponent_width, x_exponent_bias = ( config["data_in_width"], config["data_in_exponent_width"], config["data_in_exponent_bias"], ) x_quantizer = partial( minifloat_ieee_quantizer, width=x_width, exponent_width=x_exponent_width, exponent_bias=x_exponent_bias, ) return F.selu(x_quantizer(x), inplace=inplace)
[docs] def selu_log(x, inplace=False, config=None): bypass = config.get("bypass", False) if bypass: return F.selu(x, inplace=inplace) else: x_width, x_exponent_bias = ( config["data_in_width"], config["data_in_exponent_bias"], ) x_quantizer = partial( log_quantizer, width=x_width, exponent_bias=x_exponent_bias, ) return F.selu(x_quantizer(x), inplace=inplace)
[docs] def selu_block_fp(x, inplace=False, config=None): bypass = config.get("bypass", False) if bypass: return F.selu(x, inplace=inplace) else: x_width, x_exponent_width, x_exponent_bias, x_block_size = ( config["data_in_width"], config["data_in_exponent_width"], config["data_in_exponent_bias"], config["data_in_block_size"], ) x_more_than_2_dims = x.ndim > 2 x_quantizer = partial( block_fp_quantizer, width=x_width, exponent_width=x_exponent_width, exponent_bias=x_exponent_bias, block_size=x_block_size, skip_first_dim=x_more_than_2_dims, ) x_shape = [i for i in x.shape] if x_more_than_2_dims: x = torch.flatten(x, start_dim=0, end_dim=-3) x = x_quantizer(x) x = torch.reshape(x, x_shape) return F.selu(x, inplace=inplace)
[docs] def selu_block_minifloat(x, inplace=False, config=None): bypass = config.get("bypass", False) if bypass: return F.selu(x, inplace=inplace) else: x_width, x_exponent_width, x_exponent_bias_width, x_block_size = ( config["data_in_width"], config["data_in_exponent_width"], config["data_in_exponent_bias_width"], config["data_in_block_size"], ) x_more_than_2_dims = x.ndim > 2 x_quantizer = partial( block_minifloat_quantizer, width=x_width, exponent_width=x_exponent_width, exponent_bias_width=x_exponent_bias_width, block_size=x_block_size, skip_first_dim=x_more_than_2_dims, ) x_shape = [i for i in x.shape] if x_more_than_2_dims: x = torch.flatten(x, start_dim=0, end_dim=-3) x = x_quantizer(x) x = torch.reshape(x, x_shape) return F.selu(x, inplace=inplace)
[docs] def selu_block_log(x, inplace=False, config=None): bypass = config.get("bypass", False) if bypass: return F.selu(x, inplace=inplace) else: x_width, x_exponent_bias_width, x_block_size = ( config["data_in_width"], config["data_in_exponent_bias_width"], config["data_in_block_size"], ) x_more_than_2_dims = x.ndim > 2 x_quantizer = partial( block_log_quantizer, width=x_width, exponent_bias_width=x_exponent_bias_width, block_size=x_block_size, skip_first_dim=x_more_than_2_dims, ) if x_more_than_2_dims: x_shape = [i for i in x.shape] x = torch.flatten(x, start_dim=0, end_dim=-3) x = x_quantizer(x) x = torch.reshape(x, x_shape) return F.selu(x, inplace=inplace)