from functools import partial
import torch
from chop.nn.quantizers import (
block_fp_quantizer,
block_log_quantizer,
block_minifloat_quantizer,
integer_quantizer,
log_quantizer,
minifloat_denorm_quantizer,
minifloat_ieee_quantizer,
binary_quantizer,
ternary_quantizer,
)
# @mark_as_leaf_func
[docs]
def sub_integer(x, y, config):
bypass = config.get("bypass", False)
if bypass:
return x - y
else:
# establish quantizers
x_width, x_frac_width = config["data_in_width"], config["data_in_frac_width"]
x_quantizer = partial(integer_quantizer, width=x_width, frac_width=x_frac_width)
x = x_quantizer(x)
y = x_quantizer(y)
return x - y
[docs]
def sub_binary(x, y, config):
bypass = config.get("bypass", False)
if bypass:
return x - y
else:
# establish quantizers
x_stochastic = config["data_in_stochastic"]
x_bipolar = config["data_in_bipolar"]
x_quantizer = partial(
binary_quantizer, stochastic=x_stochastic, bipolar=x_bipolar
)
x = x_quantizer(x)
y = x_quantizer(y)
return x - y
[docs]
def sub_ternary(x, y, config):
bypass = config.get("bypass", False)
if bypass:
return x - y
else:
# establish quantiser
x_scaling_factor = config["data_in_scaling_factor"]
x_quantizer = partial(ternary_quantizer, scaling_factor=x_scaling_factor)
x = x_quantizer(x)
y = x_quantizer(y)
return x - y
# @mark_as_leaf_func
[docs]
def sub_minifloat_denorm(x, y, config):
bypass = config.get("bypass", False)
if bypass:
return x - y
else:
x_width, x_exponent_width, x_exponent_bias = (
config["data_in_width"],
config["data_in_exponent_width"],
config["data_in_exponent_bias"],
)
x_quantizer = partial(
minifloat_denorm_quantizer,
width=x_width,
exponent_width=x_exponent_width,
exponent_bias=x_exponent_bias,
)
x = x_quantizer(x)
y = x_quantizer(y)
return x - y
# @mark_as_leaf_func
[docs]
def sub_minifloat_ieee(x, y, config):
bypass = config.get("bypass", False)
if bypass:
return x - y
else:
x_width, x_exponent_width, x_exponent_bias = (
config["data_in_width"],
config["data_in_exponent_width"],
config["data_in_exponent_bias"],
)
x_quantizer = partial(
minifloat_ieee_quantizer,
width=x_width,
exponent_width=x_exponent_width,
exponent_bias=x_exponent_bias,
)
x = x_quantizer(x)
y = x_quantizer(y)
return x - y
# @mark_as_leaf_func
[docs]
def sub_log(x, y, config):
bypass = config.get("bypass", False)
if bypass:
return x - y
else:
x_width, x_exponent_bias = (
config["data_in_exponent_width"],
config["data_in_exponent_bias"],
)
x_quantizer = partial(
log_quantizer, width=x_width, exponent_bias=x_exponent_bias
)
x = x_quantizer(x)
y = x_quantizer(y)
return x - y
# @mark_as_leaf_func
[docs]
def sub_block_fp(x, y, config):
bypass = config.get("bypass", False)
if bypass:
return x - y
else:
x_width, x_exponent_width, x_exponent_bias, x_block_size = (
config["data_in_width"],
config["data_in_exponent_width"],
config["data_in_exponent_bias"],
config["data_in_block_size"],
)
x_more_than_2_dims = x.ndim > 2
x_quantizer = partial(
block_fp_quantizer,
width=x_width,
exponent_width=x_exponent_width,
exponent_bias=x_exponent_bias,
block_size=x_block_size,
skip_first_dim=x_more_than_2_dims,
)
# a hack to use 2d blocking
if x.shape != y.shape:
x, y = torch.broadcast_tensors(x, y)
# assert x.shape == y.shape
x_shape = [i for i in x.shape]
if x_more_than_2_dims:
x = torch.flatten(x, 0, -3)
y = torch.flatten(y, 0, -3)
x = x_quantizer(x)
y = x_quantizer(y)
x = torch.reshape(x, x_shape)
y = torch.reshape(y, x_shape)
return x - y
# @mark_as_leaf_func
[docs]
def sub_block_minifloat(x, y, config):
bypass = config.get("bypass", False)
if bypass:
return x - y
else:
x_width, x_exponent_width, x_exponent_bias_width, x_block_size = (
config["data_in_width"],
config["data_in_exponent_width"],
config["data_in_exponent_bias_width"],
config["data_in_block_size"],
)
x_more_than_2_dims = x.ndim > 2
x_quantizer = partial(
block_minifloat_quantizer,
width=x_width,
exponent_width=x_exponent_width,
exponent_bias_width=x_exponent_bias_width,
block_size=x_block_size,
skip_first_dim=x_more_than_2_dims,
)
# a hack to use 2d blocking
if x.shape != y.shape:
x, y = torch.broadcast_tensors(x, y)
# assert x.shape == y.shape
x_shape = [i for i in x.shape]
if x_more_than_2_dims:
x = torch.flatten(x, 0, -3)
y = torch.flatten(y, 0, -3)
x = x_quantizer(x)
y = x_quantizer(y)
x = torch.reshape(x, x_shape)
y = torch.reshape(y, x_shape)
return x - y
# @mark_as_leaf_func
[docs]
def sub_block_log(x, y, config):
bypass = config.get("bypass", False)
if bypass:
return x - y
else:
x_width, x_exponent_bias_width, x_block_size = (
config["data_in_width"],
config["data_in_exponent_bias_width"],
config["data_in_block_size"],
)
x_quantizer = partial(
block_log_quantizer,
width=x_width,
exponent_bias_width=x_exponent_bias_width,
block_size=x_block_size,
)
# a hack to use 2d blocking
if x.shape != y.shape:
x, y = torch.broadcast_tensors(x, y)
# assert x.shape == y.shape
x_shape = [i for i in x.shape]
x = torch.flatten(x, 0, -3)
y = torch.flatten(y, 0, -3)
x = x_quantizer(x)
y = x_quantizer(y)
x = torch.reshape(x, x_shape)
y = torch.reshape(y, x_shape)
return x - y