from functools import partial
import torch
import torch.nn.functional as F
# from ....graph.mase_tracer import mark_as_leaf_func
from chop.nn.quantizers import (
block_fp_quantizer,
block_log_quantizer,
block_minifloat_quantizer,
integer_quantizer,
log_quantizer,
minifloat_denorm_quantizer,
minifloat_ieee_quantizer,
binary_quantizer,
ternary_quantizer,
)
[docs]
def tanh_integer(x, inplace=False, config=None):
bypass = config.get("bypass", False)
if bypass:
return F.tanh(x, inplace=inplace)
else:
x_width, x_frac_width = config["data_in_width"], config["data_in_frac_width"]
x_quantizer = partial(
integer_quantizer, width=x_width, frac_width=x_frac_width, is_signed=False
)
return F.tanh(x_quantizer(x), inplace=inplace)
[docs]
def tanh_binary(x, inplace=False, config=None):
# Notice that this software does not mathemetically make sense. We added it for the completion of the path for now.
bypass = config.get("bypass", False)
if bypass:
return F.tanh(x, inplace=inplace)
else:
x_stochastic = config["data_in_stochastic"]
x_bipolar = config["data_in_bipolar"]
x_quantizer = partial(
binary_quantizer, stochastic=x_stochastic, bipolar=x_bipolar
)
return F.tanh(x_quantizer(x), inplace=inplace)
[docs]
def tanh_ternary(x, inplace=False, config=None):
bypass = config.get("bypass", False)
if bypass:
return F.tanh(x, inplace=inplace)
else:
x_scaling_factor = config["data_in_scaling_factor"]
x_quantizer = partial(ternary_quantizer, scaling_factor=x_scaling_factor)
return F.tanh(x_quantizer(x), inplace=inplace)
[docs]
def tanh_minifloat_denorm(x, inplace=False, config=None):
bypass = config.get("bypass", False)
if bypass:
return F.tanh(x, inplace=inplace)
else:
x_width, x_exponent_width, x_exponent_bias = (
config["data_in_width"],
config["data_in_exponent_width"],
config["data_in_exponent_bias"],
)
x_quantizer = partial(
minifloat_denorm_quantizer,
width=x_width,
exponent_width=x_exponent_width,
exponent_bias=x_exponent_bias,
)
return F.tanh(x_quantizer(x), inplace=inplace)
[docs]
def tanh_minifloat_ieee(x, inplace=False, config=None):
bypass = config.get("bypass", False)
if bypass:
return F.tanh(x, inplace=inplace)
else:
x_width, x_exponent_width, x_exponent_bias = (
config["data_in_width"],
config["data_in_exponent_width"],
config["data_in_exponent_bias"],
)
x_quantizer = partial(
minifloat_ieee_quantizer,
width=x_width,
exponent_width=x_exponent_width,
exponent_bias=x_exponent_bias,
)
return F.tanh(x_quantizer(x), inplace=inplace)
[docs]
def tanh_log(x, inplace=False, config=None):
bypass = config.get("bypass", False)
if bypass:
return F.tanh(x, inplace=inplace)
else:
x_width, x_exponent_bias = (
config["data_in_width"],
config["data_in_exponent_bias"],
)
x_quantizer = partial(
log_quantizer,
width=x_width,
exponent_bias=x_exponent_bias,
)
return F.tanh(x_quantizer(x), inplace=inplace)
[docs]
def tanh_block_fp(x, inplace=False, config=None):
bypass = config.get("bypass", False)
if bypass:
return F.tanh(x, inplace=inplace)
else:
x_width, x_exponent_width, x_exponent_bias, x_block_size = (
config["data_in_width"],
config["data_in_exponent_width"],
config["data_in_exponent_bias"],
config["data_in_block_size"],
)
x_more_than_2_dims = x.ndim > 2
x_quantizer = partial(
block_fp_quantizer,
width=x_width,
exponent_width=x_exponent_width,
exponent_bias=x_exponent_bias,
block_size=x_block_size,
skip_first_dim=x_more_than_2_dims,
)
x_shape = [i for i in x.shape]
if x_more_than_2_dims:
x = torch.flatten(x, start_dim=0, end_dim=-3)
x = x_quantizer(x)
x = torch.reshape(x, x_shape)
return F.tanh(x, inplace=inplace)
[docs]
def tanh_block_minifloat(x, inplace=False, config=None):
bypass = config.get("bypass", False)
if bypass:
return F.tanh(x, inplace=inplace)
else:
x_width, x_exponent_width, x_exponent_bias_width, x_block_size = (
config["data_in_width"],
config["data_in_exponent_width"],
config["data_in_exponent_bias_width"],
config["data_in_block_size"],
)
x_more_than_2_dims = x.ndim > 2
x_quantizer = partial(
block_minifloat_quantizer,
width=x_width,
exponent_width=x_exponent_width,
exponent_bias_width=x_exponent_bias_width,
block_size=x_block_size,
skip_first_dim=x_more_than_2_dims,
)
x_shape = [i for i in x.shape]
if x_more_than_2_dims:
x = torch.flatten(x, start_dim=0, end_dim=-3)
x = x_quantizer(x)
x = torch.reshape(x, x_shape)
return F.tanh(x, inplace=inplace)
[docs]
def tanh_block_log(x, inplace=False, config=None):
bypass = config.get("bypass", False)
if bypass:
return F.tanh(x, inplace=inplace)
else:
x_width, x_exponent_bias_width, x_block_size = (
config["data_in_width"],
config["data_in_exponent_bias_width"],
config["data_in_block_size"],
)
x_more_than_2_dims = x.ndim > 2
x_quantizer = partial(
block_log_quantizer,
width=x_width,
exponent_bias_width=x_exponent_bias_width,
block_size=x_block_size,
skip_first_dim=x_more_than_2_dims,
)
if x_more_than_2_dims:
x_shape = [i for i in x.shape]
x = torch.flatten(x, start_dim=0, end_dim=-3)
x = x_quantizer(x)
x = torch.reshape(x, x_shape)
return F.tanh(x, inplace=inplace)