from functools import partial
import torch.nn as nn
from torch import Tensor
import torch.nn.functional as F
from chop.nn.quantizers import (
integer_quantizer,
)
class _InstanceNorm2dBase(nn.InstanceNorm2d):
def __init__(
self,
num_features: int,
eps: float = 0.00001,
momentum: float = 0.1,
affine: bool = False,
track_running_stats: bool = False,
device=None,
dtype=None,
) -> None:
assert affine == False, "elementwise_affine not supported!"
super().__init__(
num_features, eps, momentum, affine, track_running_stats, device, dtype
)
self.bypass = False
self.x_quantizer = None
def forward(self, x: Tensor) -> Tensor:
if not self.bypass:
x = self.x_quantizer(x)
return F.instance_norm(
x,
self.running_mean,
self.running_var,
self.weight,
self.bias,
self.training or not self.track_running_stats,
self.momentum,
self.eps,
)
[docs]
class InstanceNorm2dInteger(_InstanceNorm2dBase):
[docs]
def __init__(
self,
num_features: int,
eps: float = 0.00001,
momentum: float = 0.1,
affine: bool = False,
track_running_stats: bool = False,
device=None,
dtype=None,
config=None,
) -> None:
super().__init__(
num_features, eps, momentum, affine, track_running_stats, device, dtype
)
assert config is not None, "config is None!"
self.config = config
self.bypass = config.get("bypass", False)
if self.bypass:
return
x_width, x_frac_width = config["data_in_width"], config["data_in_frac_width"]
self.x_quantizer = partial(
integer_quantizer, width=x_width, frac_width=x_frac_width
)